본문 바로가기
반응형

@기초과목39

[확률과통계 기초] 3-15. 이항분포 수식 자세한 설명 이항분포는 베르누이 시행을 n번 반복했을 때 성공이 나온 횟수인 x를 확률변수로 하는 분포라는 것을 지난시간에 배웠습니다. 이항분포의 확률분포함수도 아래와 같다는 것을 배웠습니다. $p(x)=_nC_x \ p^x(1-p)^{n-x}$위 식의 유도과정을 자세히 다루지는 않았는데요. 어떻게 위 식이 유도된건지 이해하지 못한 분들이 계실 수도 있어서 이번 시간에 자세히 설명하겠습니다.  1. 예시아주 간단한 예시를 이용해서 위 식을 이해해봅시다. 주사위 던지기 예시입니다. 주사위를 한번 던져서 3이 나오는 사건을 '성공' 나머지를 '실패'라고 두겠습니다. 주사위를 한번 던지는 시행에서 성공할 확률과 실패할 확률은 아래와 같습니다. 성공확률 = $\frac{1}{6}$실패확률 = $\frac{5}{6}$주.. 2024. 4. 24.
[확률과통계 기초] 3-16. 이항분포 예시 지난시간에 이항분포가 무엇인지 배웠습니다. 이항분포는 베르누이 시행을 n번 반복했을 때 성공이 나온 횟수인 x를 확률변수로 하는 분포이고, 분포함수는 아래와 같습니다.  $p(x)=_nC_x \ p^x(1-p)^{n-x}$ 이번시간에는 이항분포의 예시를 알아봅시다.  어떤 농구선수가 있고 자유투 성공률이 70% 라고 합시다. 이 농구선수가 자유투를 5번 던져서 성공한 횟수를 X라고 놓겠습니다. X의 확률분포가 이항분포를 따릅니다. X의 확률분포를 구해보면 아래와 같습니다.  $p(x)=_5C_x \ (0.7)^x(0.3)^{5-x}$ 자유투는 0번부터 5번까지 성공할 수 있습니다. 각각의 확률을 표로 나타내보면 아래와 같습니다.   값을 계산해보면 아래와 같습니다.   그.. 2024. 2. 23.
[확률과통계 기초] 3-14. 베르누이분포에서 이항분포로 시행의 결과가 성공과 실패 두가지인 시행을 베르누이 시행이라고 부릅니다. 예를 들면 동전던지기가 있습니다. 동전던지기 시행의 결과는 앞면과 뒷면 두가지입니다. 앞,뒤 앞면을 성공, 뒷면을 실패로 놓는다면 동전던지기는 베르누이시행입니다. 앞(성공),뒤(실패) 어떤 베르누이 시행의 성공 확률이 p이고 실패확률이 1-p 이라고 합시다. 이 베르누이 시행을 n번 반복한다고 합시다. 각 시행은 독립시행이라고 가정하겠습니다(독립시행이 무엇인지는 2-9강에서 배웠습니다). 베르누이 시행을 n번 반복했을 때 성공이 x번 나올 확률은 아래와 같습니다. $_nC_x \ p^x(1-p)^{n-x}$ $_nC_x$는 n번 중 성공이 x번 나오는 경우의 수 입니다. $p^x(1-p)^{n-x}$은 성공이 x번 나오고, 실패는 .. 2024. 2. 21.
[확률과통계 기초] 3-13. 이항분포 배우기 전에 베르누이분포 먼저 우리는 지난시간에 이항분포에서 '이항'이 어떤 의미인지 배웠습니다. 이항은 두개의 항이라는 뜻입니다. 이항분포가 무엇인지 배울 차례인데요. 그 전에 베르누이분포를 먼저 배우겠습니다. 이유는 다음 강의에서 알게되실겁니다. 시행과 사건 기억하시나요? 세번째 시간에 배웠던 시행, 표본공간, 사건의 정의를 가져옵시다. 시행 : 무한히 반복될 수 있고, 잘 정의된 결과 집합을 갖는 행위 표본공간 : 어떤 시행에서 발생할 수 있는 모든 결과를 모아놓은 집합 사건 : 어떤 시행의 결과들의 집합. 확률이 할당되어 있음. 표본공간의 부분집합. 시행,표본공간,사건을 쉽게 기억하는 방법은 주사위 던지기 예시로 기억하는 것입니다. 시행은 주사위던지기이고, 표본공간은 1부터6 까지의 집합이고, 사건은 짝수의 눈이 나오는 사건이.. 2024. 1. 3.
[확률과통계 기초] 3-12. 이항분포에서 '이항' 이 무슨 뜻일까 이번 시간부터 이항분포를 공부할 것입니다. 확률분포는 이산확률분포와 연속확률분포로 나뉘는데, 이항분포는 이산확률분포에 속합니다. '이항'이라는 말을 들으셨을 때 어떤 것이 떠오르셨나요? 방정식이 떠오르셨을 겁니다. 방정식에서 항을 옮기는 것을 '이항'이라고 불렀으니까요. 이항분포의 '이항'은 방정식의 '이항'과 다른 의미입니다. 방정식에서의 이항은 영어로 transposition 이고, 한자로 移項 인데 이동할 (이), 항 (항) 입니다. 이항분포에서 이항은 영어로 binomial 이고, 한자로 二項 입니다. 두개의 항이라는 뜻입니다. 따라서 이항분포를 직역하면 '두개의 항으로 된 분포'라는 뜻입니다. 두개의 항으로 된 분포라는게 어떤 의미인지는 다음시간 부터 알아봅시다. 2023. 12. 27.
[확률과통계 기초] 3-11. 우리가 배울 두가지 분포 우리는 확률분포를 배우고 있습니다. 확률분포가 두가지로 나눈다는 것도 배웠는데요. 확률분포는 이산확률분포와 연속확률분포로 나뉩니다. 이산확률분포와 연속확률분포에는 여러가지가 있습니다. 대표적인 분포들은 아래와 같습니다. 이산확률분포 : 이항분포, 기하분포, 음이항분포, 포아송분포, 초기하분포, 다항분포 연속확률분포 : 균등분포, 정규분포, t분포, 카이제곱분포, F분포, 감마분포, 베타분포 뭐가 이렇게 많은건가 싶으실텐데 다 사용되는 분포입니다. 각각의 분포가 어떤 상황에 사용되는지 궁금하신 분들은 [손으로 푸는 확률분포] 강의를 들어보시면 됩니다. 이 강의는 확률과 통계 기초 강의이므로 이산확률분포와 연속확률변수 중에서 각각 하나씩만 배웁니다. 이산확률분포에서는 이항분포, 연속확률분포에서는 정규분포를 .. 2023. 12. 20.
[확률과통계 기초] 3-10. P[X=x] 와 p(x)의 차이 확률변수 X의 확률질량함수의 정의는 아래와 같습니다. $P\left [ X=x_{i} \right ]=p_{i} \ \ (i=1,2,...,n)$ 위 식의 좌변에서 P[ ] 는 대괄호 안의 사건이 발생할 확률을 나타냅니다. 좌변은 $X=x_{i}$ 일 확률이라는 뜻입니다. 예를 들어봅시다. 주사위를 한번 던질 때 나오는 눈의 값을 확률변수 X라고 한다면, X의 확률질량함수는 아래와 같습니다. $P\left [ X=x \right ]=\frac{1}{6} \ \ (x=1,2,...,6)$ 위와 같은 표현을 더 간단히 나타낼 수 있습니다. 함수이름를 사용하는 것입니다. 함수 이름은 원하는 것을 사용하면 되는데 주로 p나 f를 사용합니다. 확률변수 X의 확률질량함수를 p(x)라고 한다면, p(x)의 의미는 '.. 2023. 12. 8.
[확률과통계 기초] 3-9. 확률질량함수의 성질 이산확률변수 X의 확률질량함수는 아래와 같습니다. $P\left [ X=x_{i} \right ]=p_{i} \ \ (i=1,2,...,n)$ 이번시간에는 확률질량함수의 세가지 성질을 알아봅시다. 확률은 0이상 1이하의 값을 가지므로 아래와 같은 조건이 성립합니다. (1) $0\leq p_{i} \leq 1$ 각 사건이 발생할 확률의 총 합은 1이므로 아래 조건이 성립합니다. (2) $p_{1}+p_{2}+\cdots+p_{n}=1$ 이번에는 확률변수 X가 어떤 범위 내에 있을 확률을 구해봅시다. X가 $x_{3}$이상이고 $x_{5}$이하일 확률은 아래와 같습니다. $P\left [ x_{3}\leq X\leq x_{5} \right ]=p_{3}+p_{4}+p_{5}$ 위 식을 일반화시키면 아래와 같.. 2023. 11. 15.
[확률과통계 기초] 3-8. 확률질량함수 (이산확률변수의 확률함수) 우리는 확률변수가 둘로 나뉜다는 것을 배웠습니다. 확률변수는 이산확률변수와 연속확률변수 두 가지로 구분됩니다. 이산확률변수는 확률변수 각각이 확률값을 갖습니다. 연속확률변수는 어떤 구간의 확률만 정의가 가능했습니다. 이산확률변수와 연속확률변수의 확률함수는 정의가 다릅니다. 이산확률변수의 확률함수는 확률질량함수이고 연속확률변수의 확률함수는 확률밀도함수입니다. 이번 시간에는 이산확률변수의 확률함수인 확률질량함수에 대해 배워봅시다. 간단한 예시를 통해 확률질량함수가 무엇인지 알아봅시다. 주사위를 한번 던져서 나오는 눈의 수를 확률변수 X라고 놓으면 X는 이산확률변수입니다. 확률함수는 확률변수를 확률과 대응시킨 것을 말합니다. 확률변수 X의 확률함수는 표로 나타낼 수도 있고 그래프로 나타낼 수도 있습니다. 먼저.. 2023. 11. 15.
[확률과통계 기초] 3-7. 연속확률변수에서 확률이 정의되지 않는 이유 이산확률변수에서는 변수가 가질 수 있는 값의 개수가 무한한데도 변수가 어떤 값을 가질 확률이 정의되는 경우가 있었습니다. 아래와 같이 확률변수가 커지면 확률이 0으로 수렴하는 경우가 대표적인 예시입니다. $P\left [ X=x \right ]=\left ( \frac{1}{2} \right )^x$ 연속확률변수도 확률변수가 가질 수 있는 값의 개수가 무한합니다. 이산확률변수와 달리 연속확률변수에서는 확률변수가 어떤 값을 가질 확률이 확률이 항상 정의되지 않습니다. 왜 그런지 같이 생각해봅시다. 연속확률변수가 확률을 갖는다고 가정하고 아래와 같은 그래프를 그려봅시다. 양 끝 값은 0이라고 합시다. 구간 안에 있는 값들이 발생할 확률이 0이 아닌 어떤 구간을 하나 정의합시다. 이 구간의 발생 확률의 최솟값.. 2023. 8. 4.
[확률과통계 기초] 3-6. 개수가 무한한 이산확률변수 이산확률변수는 아래 두가지 특징을 갖는 확률 변수 입니다. 1) 변수가 어떤 값을 가질 확률을 정의할 수 있음 2) 변수가 될 수 있는 값들을 셀 수 있음 이와 같은 특징을 보고 나면 이산확률변수가 될 수 있는 값들의 개수가 반드시 유한할 것이라고 생각할 수 있습니다. 주사위를 던질 때 나오는 눈의 값을 확률변수로 하는 경우나, 동전을 두번 던져서 앞면이 나오는 횟수를 확률변수로 하는 경우와 같이 많은 경우 확률변수가 될 수 있는 값의 개수가 유한한 것은 맞습니다. 하지만 개수가 무한한 경우도 있습니다. 오늘은 이산확률변수가 될 수 있는 값들의 개수가 무한한 예시를 하나 살펴봅시다. 이산확률변수가 모든 자연수 값을 가질 수 있다고 합시다. 이때 각 값이 발생할 확률을 아래와 같이 정의하겠습니다. $P\l.. 2023. 7. 24.
[확률과통계 기초] 3-5. 두 종류의 확률변수 (이산, 연속) 우리는 두 종류의 확률변수가 있다는 사실을 알게되었습니다. 확률변수가 어떤 값을 가질 확률이 존재하는 확률변수가 있었고 그렇지 않은 확률변수가 있었습니다. 확률변수가 어떤 값을 가질 확률이 정의되는 확률변수의 예시로는 '동전을 두 번 던질 때 나오는 앞면의 개수'가 있습니다. 이 확률변수를 X라고 놓고, X가 가질 수 있는 값을 집합으로 나타내면 아래와 같습니다. $X=\left \{0,1,2 \right \}$ 이러한 확률변수를 '이산확률변수'라고 부릅니다. 확률변수가 어떤 값을 가질 확률이 정의되는 확률변수들을 모아보니 이런 특징이 있었습니다. "확률변수가 될 수 있는 값들을 셀 수 있음." 이 특징을 이산확률변수의 정의로 사용합니다. 이산확률변수 : 확률변수가 될 수 있는 값들을 셀 수 있는 확률변.. 2023. 7. 17.
[확률과통계 기초] 3-4. 확률이 정의되지 않는 확률변수 어떤 확률변수 X가 있구요. 이 확률변수는 1부터 3까지의 실수 구간에 있는 값을 가질 수 있다고 하겠습니다. $1\leq X \leq 3$ 위 구간의 값이 발생할 확률이 같다고 가정하고 아래 확률을 한번 구해봅시다. $P\left [ X=1 \right ]$ 위 확률을 p라고 놓으면 전체 확률은 $p \times \infty$ 가 됩니다. 전체 확률이 무한대이므로 모순입니다. 따라서 확률을 정의할 수 없습니다. 이번에는 아래 확률을 한번 구해봅시다. $P\left [ 1\leq X \leq 2 \right ]$ 확률은 0.5입니다. 전체 구간 중 절반이기 때문입니다. 주사위를 던질 때 각 눈이 발생할 확률은 정의가 가능했는데, 오늘 살펴본 확률변수는 각 값이 발생할 확률을 정의할 수 없었습니다. 구간의.. 2023. 7. 9.
[확률과통계 기초] 3-3. 확률함수와 확률분포 우리가 계속 사용하고 있는 동전 두개 던지는 예시를 가져옵시다. 동전을 두개 던져서 앞면이 나오는 횟수를 확률변수로 놓을 수 있었습니다. 확률변수를 X로 놓으면 X가 가질 수 있는 값은 아래와 같습니다. X={0,1,2} 확률변수 X가 각 값을 가질 확률은 아래와 같습니다. $P[X=0]=\frac{1}{4}$ $P[X=1]=\frac{1}{2}$ $P[X=2]=\frac{1}{4}$ 확률변수 X가 가질 수 있는 값들과, 각 값을 가질 확률 사이에 대응관계가 존재합니다. 이 대응관계를 표로 나타내면 아래와 같습니다. X 0 1 2 합계 $P[X=x]$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ 1 이와 같은 대응관계를 '확률분포'라고 부릅니다. 이 대응관계를 p(x)라는 .. 2023. 7. 2.
[확률과통계 기초] 3-2. 확률변수와 확률 (P[X=x] 의 의미) 우리는 지난시간에 확률변수가 무엇인지 배웠습니다. 지난시간에 배운 확률변수 예시를 간단히 복습해봅시다. 동전을 두개 던질 때 앞면이 나오는 횟수를 확률변수로 놓을 수 있었습니다. 확률변수를 X라고 놓으면 아래와 같이 나타낼 수 있습니다. $X=\left \{ 0,1,2 \right \}$ 동전을 두개 던지면 앞면은 0,1,2개 나올 수 있기 때문입니다. 이때 각각이 발생할 확률은 $\frac{1}{4}$, $\frac{1}{2}$, $\frac{1}{4}$입니다. X가 0일 확률은 $\frac{1}{4}$를 기호를 사용하여 나타내면 아래와 같습니다. $P[X=0]=\frac{1}{4}$ 위 식에서 P는 함수가 아니라는 것에 주의하세요. "X가 0일 확률"이라는 의미의 기호일 뿐입니다. 나머지도 나타내면 .. 2023. 6. 12.
[확률과통계 기초] 3-1. 확률변수 세번째 단원인 통계 단원의 첫 시간입니다. 확률변수에 대해서 배울건데요. 확률변수는 통계에서 아주 중요한한 내용입니다. 통계학은 확률변수들을 분석하는 과목이라고 할 수 있을 정도입니다. 우리는 수학에서 이미 변수라는 것을 접했는데요. 수학에서의 변수를 먼저 복습해보고 확률변수에 대해 배워봅시다. 수학에서의 변수 수학에서는 정해지지 않은 어떤 값을 표현하기 위해 변수를 사용합니다. 아래와 같은 일차 함수가 있다고 합시다. $f(x)=2x^{2}$ 이 함수에서 변수는 x입니다. 실수에서 정의된 함수라면, x에는 모든 실수가 올 수 있습니다. 혹은 변수를 유한하게 제한할 수도 있습니다. 변수 x를 아래 집합의 원소로 제한해봅시다. x={1,2,3,4,5} 이제 x는 1,2,3,4,5 중 하나의 값을 갖는 변수.. 2023. 5. 29.
[확률과통계 기초] 2-10. 2단원 확률 내용 총정리 두번째 파트인 확률파트에서 배운 내용은 아래와 같습니다. 2-1) 사건이 발생할 확률 2-2) 확률의 덧셈정리 2-3) 조건부 확률 설명 및 공식유도 2-4) 확률의 곱셈정리 2-5) 확률의 곱셈정리 직관적으로 이해하기 2-6) 사건의 독립 설명 2-7) 사건의 독립 예시 2-8) 배반사건은 독립인가 종속인가 2-9) 독립시행 간단히 복습해봅시다. 사건이 발생할 확률 어떤 시행의 표본공간을 S라고 합시다. 표본공간의 부분집합이 사건입니다. 어떤 사건 A가 발생할 확률은 아래와 같습니다. $P(A)=\frac{n(A)}{n(S)}$ 확률의 덧셈정리 확률의 덧셈정리는 사건 A 또는 B가 일어날 확률에 대한 정리입니다. 사건 A 또는 B가 일어날 확률은 아래와 같습니다. $P(A\cup B)=\frac{n(A.. 2023. 5. 25.
[확률과통계 기초] 2-9. 독립시행 독립시행이란? 독립시행은 각각의 시행의 결과가 다른 시행의 결과에 영향을 주지 않는 시행을 말합니다. 주사위를 던지는 사건을 예로 들겠습니다. 주사위를 던질 때 각 눈이 나올 확률은 1/6 입니다. 주사위를 한 번 던져서 3이 나왔다고 합시다. 이렇게 발생한 결과가 그 다음 주사위를 던질때의 각 눈이 나올 확률에 영향을 주지 않습니다. 주사위를 몇번 던지건 각 눈이 나올 확률은 항상 1/6 입니다. 독립시행 확률 독립시행의 확률을 한번 구해봅시다. 주사위를 5번 연속으로 던져서 1의 눈이 3번 나올 확률을 구해봅시다. 1이 3번 나오는 경우를 예로 들면 아래와 같습니다. 1 1 1 2 2 1 1 1 2 3 1 1 1 4 5 ... 몇가지나 될까요? 총 다섯 자리 중에서 1이 들어갈 세개의 자리를 먼저 뽑.. 2023. 5. 22.
[확률과통계 기초] 2-8. 배반사건은 독립인가 종속인가 표본공간 S에 두 사건 A와 B가 있습니다. 두 사건이 배반사건이라면 아래 그림과 같이 나타낼 수 있습니다. 두 사건은 겹치는 부분이 없이 서로 떨어져 있기 때문에 독립적인 것처럼 보입니다. 우리가 일상적으로 쓰는 독립이라는 단어가 '떨어져 있는' 이라는 느낌을 주기 때문에 이런 오해가 발생하는 것 같습니다. 하지만 통계에서 사용하는 독립의 의미는 다릅니다. 통계에서 독립은 이렇게 정의가 되죠. '한 사건의 발생이 다른 사건의 발생 확률에 영향을 주지 않는 것' 그런데 만약 두 사건이 서로 배반이라면 한 사건이 발생했을 때 다른 사건이 발생할 확률은 0이 됩니다. 만약 A가 발생했다면 B는 발생할 수가 없기 때문입니다. 한 사건의 발생이 다른 사건에 엄청난 영향을 주는 것이죠. 수식으로도 한번 이해를 해.. 2023. 5. 20.
[확률과통계 기초] 2-7. 사건의 독립 예시 사건의 독립과 관련된 예제를 두가지 풀어봅시다. 예제1. 주사위를 던질 때 2 이하의 눈이 나오는 사건을 A, 짝수의 눈이 나오는 사건을 B라고 하자. 사건 A와 B가 서로 독립인지 판단하시오. 풀이) 사건 A와 B가 발생할 확률은 각각 아래와 같습니다. $P(A)=\frac{1}{3}$ $P(B)=\frac{1}{2}$ 사건 A와 B가 동시에 발생할 확률은 아래와 같습니다. $P(A\cap B)=\frac{1}{6}$ $P(A\cap B)=P(A)P(B)$ 가 성립하므로 두 사건은 독립입니다. 예제2. 동전 한개와 주사위 한 개를 동시에 던질 때, 동전은 앞면이 나오고 주사위는 홀수가 나올 확률을 구하시오. 풀이) 이번 문제는 위 문제와 다르게 독립임을 확인하는게 아니라 독립 조건을 사용하면 됩니다. .. 2023. 5. 6.
[확률과통계 기초] 2-6. 사건의 독립 설명 표본공간 S에 두 사건 A와 B가 있습니다. 두 사건이 서로 독립이라는 것은 한 사건의 발생이 다른 사건의 발생 확률에 영향을 주지 않는 것을 말합니다. 수식으로 표현하면 아래와 같습니다. $P(A|B)=P(A)$ $P(A|B^{c})=P(A)$ $P(B|A)=P(B)$ $P(B|A^{c})=P(B)$ 첫번째 수식을 봅시다. 사건 B가 일어났을 때 A가 일어날 확률과 A가 일어날 확률이 같다는 것은 사건 B의 발생이 A의 확률에 영향을 주지 않는다는 것을 말합니다. 위 수식들은 서로 같은 수식입니다. 한 수식을 변형하여 다른 수식을 만들 수 있습니다. 첫번째 수식을 이용하여 두번째 수식을 유도해봅시다. 아래 수식에서 출발합니다. $P(A|B)=P(A)$ 좌변을 아래와 같이 변형합시다. $\frac{P(A.. 2023. 5. 2.
[확률과통계 기초] 2-5. 확률의 곱셈정리 직관적으로 이해하기 확률의 곱셈정리가 아래 두가지 수식이라는 것을 지난시간에 배웠습니다. $P(A \cap B)=P(A)P(B|A)$ $P(A \cap B)=P(B)P(A|B)$ 수학적으로는 유도했지만 와닿지 않을 수도 있어서 직관적으로도 이해하려고 합니다. 어떤 학교에 학생이 100명이라고 합시다. 전체 학생은 남,녀로 분류할 수 있고 다시 문,이과로 분류할 수 있습니다. 벤다이어그램으로 나타내면 아래와 같습니다. 이 학교에서 학생 한명을 뽑을 때, 남학생이면서 이과일 확률은 아래와 같이 나타낼 수 있습니다. P(이과 ∩ 남) 이과이면서 남학생일 확률은 남학생을 뽑고, 그 남학생들 중에서 이과를 뽑을 확률과 같습니다. 아래와 같습니다. P(이과 ∩ 남) = P(남) X P(이과 | 남) 위 식이 확률의 곱셈정리입니다. 다.. 2023. 1. 20.
[확률과통계 기초] 2-4. 확률의 곱셈정리 확률의 곱셈정리는 사건 A 와 B가 동시에 일어날 확률에 대한 정리입니다. 사건은 집합이었죠? 두 사건이 동시에 일어난다는 것이 무슨 의미일까요? 사건 A와 B를 벤다이어그램으로 표현해봅시다. 두 사건이 동시에 일어난다는 것은 위 벤다이어그램의 교집합이 발생한다는 것입니다. 따라서 사건 A 와 B가 동시에 일어날 확률은 아래와 같이 표현됩니다. $P(A \cap B)$ 위 식은 조건부 확률을 이용해서 다른 두 확률의 곱으로 나타낼 수 있는데요. 위 식을 조건부확률을 이용해서 다른 두 확률의 곱으로 나타내는 것이 확률의 곱셈정리입니다. 아래와 같은 두가지 방법이 있습니다. 1) 사건 B가 발생했을 때 A가 발생할 확률를 이용 $P(A|B)=\frac{P(A \cap B)}{P(B)}$ 위 식을 $P(A \.. 2023. 1. 20.
[확률과통계 기초] 2-3. 조건부 확률 설명 및 공식유도 어떤 사행의 표본공간 S 라고 합시다. 표본공간의 부분집합인 사건 A와 B가 있다고 합시다. 이때 조건부 확률은 아래와 같습니다. '사건 B가 발생했을 때 A가 발생할 확률' 수식으로는 아래와 같이 나타냅니다. $P(A|B)$ 조건부 확률이 어떻게 계산되는지 알아봅시다. 표본공간과 사건 모두 집합이므로 벤다이어그램으로 나타낼 수 있습니다. 사건 B가 이미 발생한 상황이므로, 표본공간은 B가 됩니다. 이때 A가 발생하는 사건은 아래 그림의 노란색 부분입니다. B가 발생했을 때 A가 발생할 확률을 구해보면 아래와 같습니다. $P(A|B)=\frac{n(A\cap B)}{n(B)}$ 우변을 각각 확률로 변형해봅시다. 우변의 분자와 분모를 n(S) 로 나눠줍니다. $P(A|B)=\frac{\frac{n(A\ca.. 2023. 1. 10.
[확률과통계 기초] 2-2. 확률의 덧셈정리 확률의 덧셈정리는 사건 A 또는 B가 발생할 확률에 대한 정리입니다. 사건 A 가 일어날 확률이 $P(A)$ 이고, 사건 B가 일어날 확률이 $P(B)$라고 두겠습니다. 사건 A 또는 B를 먼저 기호로 나타내봅시다. 사건은 뭐죠? 사건은 '집합'입니다. 집합에서 '또는' 영어로 or 은 합집합입니다. 사건 A또는 B를 기호로 나타내면 아래와 같습니다. $A \cup B$ A 또는 B가 발생할 확률은 아래와 같이 나타냅니다. $P(A \cup B)$ 위 식을 변형하면 확률의 덧셈정리가 유도되는데요. 한 번 유도해봅시다. 표본공간을 S라고 놓으면 $P(A \cup B)$는 아래와 같이 나타낼 수 있습니다. 지난 시간에 배운 확률의 정의입니다. $P(A\cup B)=\frac{n(A\cup B)}{n(S)}$.. 2023. 1. 8.
[확률과통계 기초] 2-1. 사건이 발생할 확률 확률에 대해서는 다들 어느정도 익숙한 상태일 것입니다. 문제를 하나 풀어봅시다. 주사위를 하나 던져서 홀수의 눈이 나올 확률이 얼마인가요? 네 1/2 입니다. 1/2은 어떻게 나온 값일까요? 주사위를 하나 던질 때 나올 수 있는 눈의 수가 6가지 이고, 홀수의 눈의 수는 3가지니까 3을 6으로 나눈 값이 확률이 됩니다. (홀수의 눈이 나오는 경우의 수) / (전체 경우의 수) 위 확률을 한번 일반화시켜봅시다. 주사위라는 예시 없이 확률을 설명하려는 것입니다. 어떤 개념을 일반화 시켜 놓으면 의사소통에서의 오해도 줄어들고, 응용과 확장도 편해집니다. 확률을 일반화 시켜서 설명하려면 용어들을 정의할 필요가 있습니다. 예를 들면 '주사위를 던진다는 것'을 일반화 해서 부를 용어가 필요하겠죠? 또는 홀수의 눈이.. 2023. 1. 8.
[확률과통계 기초] 1-12. 1단원 경우의 수 내용 요약 이 강의는 크게 세개의 단원으로 되어 있는데요. 경우의수, 확률, 통계입니다. 우리는 지난시간까지 경우의 수 공부를 완료했습니다. 우리가 경우의 수 단원에서 배운 내용들은 아래와 같습니다. 시행과 표본공간 사건 순열과 조합 이항정리 한 문장을 표현하면 이렇습니다. "사건은 어떤 시행의 결과들의 집합이고, 사건의 원소 개수가 경우의 수 이다. 경우의 수를 구하는 테크닉에는 순열과 조합이 있다." 저는 1단원에서 가장 중요한 키워드는 '사건'이라고 생각합니다. 우리가 다음 단원에서 확률을 배울 건데요. 확률 앞에는 이런 말이 생략되어 있습니다. (어떤 사건이 발생할) 확률 2단원인 확률 단원도 사실은 사건 이야기입니다. 사건이 발생할 확률을 구하는 것이구요. 사건이 발생할 확률을 구할 때, 사건의 원소 개수.. 2023. 1. 7.
[확률과통계 기초] 1-11. 사건을 잘못 알고 계실지도 몰라요 사건의 정의는 이미 배운 상태인데요. 확률과 통계에서 사건은 아주 중요한 개념이라서 정말 이해했는지 한번 더 확인해보려고 합니다. 확률과 통계에서 사용되는 사건은 우리가 일상적으로 사용하는 사건의 의미와는 다릅니다. 우리가 일상적으로 사용하는 사건의 정의는 아래와 같습니다. 사건 : 사회적으로 문제를 일으키거나 주목을 받을 만한 뜻밖의 일 우리가 '사건이 발생했다' 라고 할 때의 사건은 이미 벌어진 특정한 일을 말합니다. 주로 뉴스에서 많이 듣는 단어죠. 총격 사건, 위반 사건 등에 사용합니다. 반면에 통계에서 사건은 이미 벌어진 일이 아닙니다. 주사위를 던져서 3이 나왔다고 합시다. 3이 나온 상황은 통계에서는 사건이 아닙니다. 일상에서는 발생한 어떤 상황을 지칭할 때 사건이라고 하는데요. 통계에서 사.. 2023. 1. 7.
[확률과통계 기초] 1-10. 사건과 경우의 수는 무엇이 다른가 안녕하세요. 확률과 통계 기초입니다. 사건과 경우의 수의 차이가 무엇인지 설명해보라고 하면 대답하기가 쉽지 않습니다. 사건은 어떤 시행의 결과들의 집합이라는 것을 이미 배웠습니다. 어떤 시행이 주사위 던지기라고 한다면, 홀수의 눈이 나오는 사건, 짝수의 눈이 나오는 사건 등이 있습니다. 그렇다면 경우의 수는 무엇일까요? 경우의 수가 무엇인지 알기 위해 경우의 수를 구하는 문제를 하나 풀어봅시다. "주사위를 하나 던질 때, 3 이상의 눈이 나오는 경우의 수를 구하시오" 3 이상의 눈이 나오는 경우의 수는 3,4,5,6으로 4가지입니다. 이 문제를 사건의 관점으로 풀어봅시다. 3 이상의 눈이 나오는 사건은 {3,4,5,6} 입니다. 이때 경우의 수는 사건의 원소의 개수입니다. 이제 경우의 수가 무엇인지 알았.. 2023. 1. 5.
[확률과통계 기초] 1-9. 이항정리 원리 이해하기 이항정리는 조합을 배우고 나서 바로 등장합니다. 이항정리에 조합이 사용되기 때문입니다. '이항'이라고 하면 '항을 옮긴다'는 뜻에 더 익숙하실 겁니다. 이항정리에서 이항은 항을 옮긴다는 뜻이 아니라 '두개의 항'이라는 뜻입니다. 이항정리는 두개의 항으로된 식을 거듭제곱한 식을 전개하는 방법입니다. 가장 간단한 형태는 아래와 같습니다. $(a+b)^{n}$ 결론부터 말씀드리면 아래와 같이 전개할 수 있습니다. $(a+b)^{n}=_{n}C_{n} \ a^{n}+_{n}C_{n-1} \ a^{n-1} b+_{n}C_{n-2} \ a^{n-2} b^{2}+\cdots+_{n}C_{1} \ a b^{n-1}+_{n}C_{0} \ b^{n}$ 원리를 알아봅시다. 작은 숫자부터 시작하겠습니다. n에 2를 넣어봅시다.. 2022. 5. 20.
반응형