본문 바로가기
반응형

적률생성함수15

[통계 적률의 이해] 16. 특성함수가 항상 존재하는 이유 적률생성함수가 존재하지 않는 경우에는 특성함수를 사용할 수 있습니다. 특성함수는 모든 확률분포에 대해 존재하기 때문입니다. 오늘은 정말 그러한지를 증명해봅시다. 먼저 특성함수가 존재한다는 의미가 무엇인지 짚고 넘어가겠습니다. 특성함수가 존재한다는 것은 t에 대한 특성함수 값이 유한하다는 의미입니다. 확률변수 X의 확률밀도함수가 f(x) 일 때, 특성함수는 아래와 같이 정의됩니다. $\varphi_{X}(t)=E\left [ e^{itx} \right ]=\int_{-\infty}^{\infty}e^{itX}f(x)dx$ 양변에 절댓값을 씌워줍시다. $\left | \varphi_{X}(t) \right |=\left | \int_{-\infty}^{\infty}e^{itX}f(x)dx \right |$ .. 2022. 9. 23.
[통계 적률의 이해] 15. 특성함수 적률생성함수가 존재하지 않는 확률분포들이 있다는 것을 배웠습니다. 자주 사용되는 t분포도 적률생성함수가 없었습니다. 적률생성함수와 같은 역할을 하면서, 모든 확률분포에서 존재하는 함수가 발견되었습니다. 이 함수가 특성함수입니다. 특성함수는 적률생섬함수의 t 대신 it 를 넣은 함수입니다. 아래와 같이 정의됩니다. 그리스어 phi 를 기호로 사용합니다. $\varphi_{X}(t)=E\left [ e^{itX} \right ]=\int_{-\infty}^{\infty}e^{itx}f(x)dx$ 여기서 $\varphi $ 는 그리스어인데 fi 또는 fie 로 발음합니다. 적률생성함수는 아래와 같이 정의됐었습니다. $M_{X}(t)=E\left [ e^{tX} \right ]=\int_{-\infty}^{\i.. 2022. 9. 23.
[통계 적률의 이해] 14. 적률생성함수가 없는 분포도 있다 모든 확률분포에서 적률생성함수가 항상 존재하는 것은 아닙니다. 적률생성함수가 존재하지 않는 확률분포 도 있습니다. 오늘은 적률생성함수가 존재하지 않는 확률분포를 한가지 알아봅시다. 아래와 같은 확률분포인데요. Cauchy 분포의 일종입니다. $f(x)=\frac{1}{\pi}\frac{1}{x^2+1}$ Cauchy 분포의 일반형은 아래와 같습니다. $f(x;x_{0},\gamma)=\frac{1}{\pi \gamma \left [ 1+\left ( \frac{x-x_{0}}{\gamma} \right )^2 \right ]}$ 위에서 소개한 분포는 Cauchy 분포에서 $x_{0}$ 이 0이고, $\gamma$가 1인 경우입니다. 지금부터 아래 분포의 적률생성함수를 구해봅시다. $f(x)=\frac{1.. 2022. 9. 12.
[통계 적률의 이해] 13. 적률생성함수가 같으면 같은 분포일까 두 확률변수의 확률분포가 같으면, 적률생성함수는 확률분포를 적분하여 구하는 것이므로 적률생성함수도 당연히 같습니다. 반대로 두 확률변수의 적률생성함수가 같다고 합시다. 이때 두 확률변수의 확률분포는 같다고 할 수 있을까요? 대답은 yes 입니다. 어떻게 그럴 수 있는지 수학적으로 유도해 봅시다. 두 확률변수 X와 Y의 적률생성함수가 같다면 아래 등식이 성립합니다. $\int_{-\infty}^{\infty} e^{tx}f(x)dx=\int_{-\infty}^{\infty} e^{ty}f(y)dy$ 좌변과 우변의 변수를 z로 바꿔줍시다. 어차피 모든 구간에서 적분되는 것이므로 z로 바꿔도 결과가 같습니다. $\int_{-\infty}^{\infty} e^{tz}f_{X}(z)dz=\int_{-\infty}.. 2022. 9. 12.
적률생성함수 vs 특성함수 적률생성함수 (Moment Generating Function) 적률생성함수는 그 이름에서도 알 수 있듯 적률을 생성해주는 함수입니다. 적률이 무엇인지 먼저 알아야 겠죠. 적률은 아래와 같이 정의됩니다. $E\left [ X^n \right ]$ X 는 확률변수입니다. 확률변수 $X^n$ 의 기댓값을 적률이라고 합니다. 적률에는 차수가 있습니다. $E\left [ X^n \right ]$ 은 n차적률입니다. $E\left [ X \right ]$ 은 1차적률이고, $E\left [ X^2 \right ]$ 은 2차 적률입니다. 적률은 통계량과 관련있습니다. 1차적률은 평균이고 2차적률은 분산을 구할때 사용됩니다. 3차적률은 왜도, 4차적률은 첨도와 관련있습니다. 적률을 생성하는 함수인 적률생성함수는 아래.. 2022. 7. 9.
[통계 적률의 이해] 9. 정규분포의 적률생성함수로 평균,분산 구해보기 지난시간에 유도한 정규분포의 적률생성함수는 아래와 같습니다. $M_{X}(t)=E(e^{tX})=e^{ \mu t+\frac{ \sigma^2 t^2 }{2} }$ 적률생성함수를 이용하여 평균, 표준편차, 왜도, 첨도를 구해봅시다. 1. 평균 적률생성함수를 한번 미분하고 t에 0을 넣으면 됩니다. 적률생성함수를 한번 미분합시다. $\frac{dM_{X}(t)}{dt}=E(Xe^{tX})=e^{ \mu t+\frac{ \sigma^2 t^2 }{2} } \times \left (\mu+\sigma^{2}t \right )$ t에 0을 넣겠습니다. $\left.\begin{matrix} \frac{dM_{X}(t)}{dt} \end{matrix}\right|_{t=0}=E(X)=\mu$ 2. 분산 분산은 아.. 2021. 11. 4.
[통계 적률의 이해] 8. 정규분포의 적률생성함수 적률생성함수가 무엇인지 알게되었으니 실제 확률변수에 적용해봅시다. 가장 대표적인 분포인 정규분포를 따르는 확률변수에 적용하겠습니다. 적률생성함수의 정의는 아래와 같습니다. $M_{X}(t)=E\left [ e^{tX} \right ]=\int_{-\infty}^{\infty}e^{tx}f(x)dx$ 정규분포의 확률밀도함수는 아래와 같습니다. $f(x)=\frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{1}{2}\left ( \frac{x-\mu}{\sigma} \right )^{2}}$ 정규분포의 확률밀도함수를 적률생성함수 수식에 대입합시다. $M_{X}(t)=\int_{-\infty}^{\infty}e^{tx}\frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{1}{2.. 2021. 11. 4.
[통계 적률의 이해] 7. 적률생성함수 수학 거의 없이 이해하기 지난 강의에서 수학을 많이 사용하여 적률생성함수를 설명했는데요. 혹시 수학에 어려움을 느끼는 분들이 계실 수도 있어서 이번 시간에는 수학을 최대한 적게 쓰며 적률생성함수를 설명해보겠습니다. 적률생성함수는 함수입니다. 변수는 t입니다. t에대한 함수에요. 아래와 같습니다. $M(t)$ 어떤 확률변수 X의 적률생성함수는 아래와 같이 정의됩니다. $M_{X}(t)=E\left [ e^{tX} \right ]$ 위 식을 이용하면 정규분포의 적률생성함수도 구할 수 있고 이항분포의 적률생성함수도 구할 수 있습니다. 적률생성함수를 한번 구해놓으면 유용하게 사용됩니다. 적률생성함수를 한번 미분에서 t에 0을 넣으면 X의 기댓값인 $E\left [ X \right ]$ 가 구해집니다. 두번 미분하고 t에 0을 넣으면 $.. 2021. 10. 27.
[손으로 푸는 통계 ver1.0] 74. 표본분산의 분포 유도 (39) 카이제곱분포의 적률생성함수 카이제곱분포를 유도한 김에 적률생성함수도 구해봅시다. 이어지는 강의에서 사용될 예정입니다. 카이제곱분포는 아래와 같습니다. $f_{n}(x)=\frac{1}{2^{\frac{n}{2}} \Gamma \left ( \frac{n}{2} \right ) } e^{-\frac{x}{2}} x^{\frac{n}{2}-1}$ 적률생성함수의 정의는 아래와 같습니다. $M_{X}(t)=\int_{-\infty}^{\infty}e^{tx}f(x)dx$ 카이제곱분포에 적용하면 아래와 같습니다. 카이제곱분포의 확률변수는 정규분포를 따르는 확률변수의 제곱이므로 항상 양수입니다. 따라서 적분구간은 0부터 시작합니다. $M_{X}(t)=\int_{0}^{\infty}e^{tx}\frac{1}{2^{\frac{n}{2}} \Ga.. 2021. 9. 22.
[통계 적률의 이해] 6. 적률생성함수란? 적률생성함수는 영어로 moment generating function 입니다. 줄여서 MGF라고 부르는데요. 말 그대로 적률을 생성해주는 함수입니다. 어떤 적률을 생성해주는걸까요? 우리는 지난시간까지 세가지 종류의 적률을 배웠습니다. - 적률 - 중심적률 - 표준화적률 적률생성함수는 이들 중 '적률'을 생성합니다. 물론 적률은 적분을 통해서 구할 수 있습니다만, 적률생성함수를 한번 구해놓으면 n차 적률을 아주 쉽게 구할 수가 있습니다. 아주 기발한 방법입니다. 적률생성함수는 아래와 같이 정의됩니다. $M_{X}(t)=E\left [ e^{tX} \right ]$ 연속확률변수라면 아래와 같이 구할 수 있습니다. $M_{X}(t)=E\left [ e^{tX} \right ]=\int_{-\infty}^{\i.. 2021. 9. 16.
[손으로 푸는 통계] 14. 중심극한정리 증명 (#3. 표본평균의 적률생성함수) 중심극한정리 증명 (#3. 표본평균의 적률생성함수) 중심극한정리 증명의 마지막 시간입니다. 첫 시간에는 두 확률변수의 확률분포가 같을 조건을 배웠습니다. 두 확률변수의 적률생성함수가 같다면, 두 확률변수의 확률분포가 같았습니다. 두번째 시간에는 정규분포의 적률생성함수를 유도했습니다. 정규분포의 적률생성함수는 아래와 같습니다. $M_{X}(t)=E(e^{tx})=e^{ \mu t+\frac{+ \sigma^2 t^2 }{2} }$ 이번 시간에는 표본평균의 적률생성함수를 유도할 것입니다. 유도된 적률생성함수가 정규분포의 적률생성함수와 같다면, 표본평균의 분포와 정규분포가 같다고 할 수 있습니다. 표본평균의 분포가 정규분포를 따른다는 것을 보일 수 있는 것입니다. 목차 1. 표본평균의 적률생성함수 유도 2. .. 2018. 3. 24.
[손으로 푸는 통계] 13. 중심극한정리 증명 (#2. 정규분포의 적률생성함수) 중심극한정리 증명 (#2. 정규분포의 적률생성함수) 지난시간에 두 확률변수의 확률분포가 같을 조건을 배웠습니다. 두 확률변수의 적률생성함수가 같다면 두 확률변수의 확률분포가 같았습니다. 두 확률분포의 적률생성함수가 같음 → 두 확률변수의 확률분포가 같음. 이 원리를 이용하여 중심극한정리를 증명할 수 있습니다. 표본의 크기가 무한히 커질 때 표본평균의 적률생성함수를 구하고, 이를 정규분포의 적률생성함수와 비교합니다. 두 적률생성함수가 같다는 것을 보이면, 표본평균의 분포가 정규분포라는 것을 보일 수 있습니다. 이번글에서는 정규분포의 적률생성함수를 유도해보겠습니다. 다음 글에서 표본평균의 적률생성함수를 유도하고 둘을 비교할 것입니다. 정규분포의 적률생성함수 유도 정규분포를 따르는 확률변수 X가 있다고 합시다.. 2018. 3. 24.
[손으로 푸는 통계] 12. 중심극한정리 증명 (#1. 확률분포가 같을 조건) 중심극한정리 증명 (#1. 확률분포가 같을 조건) 지난시간까지 중심극한정리 유도에 사용되는 두가지 재료를 공부해봤습니다. 두 가지 재료는 아래와 같습니다. - 테일러 급수 - 적률생성함수 중심극한정리는 표본의 크기가 커짐에 따라 '표본 평균'들의 분포가 정규분포에 가까워져 간다는 정리입니다. 표본의 크기가 충분히 클 경우 표본평균의 분포를 정규분포로 가정하는데 사용되는 정리입니다. t검정을 비롯하여 모수적 통계방법들의 기반이 되는 정리입니다. 중심극한정리를 유도하는 절차는 아래와 같습니다. #1. 두 확률변수의 적률생성함수가 같다면, 두 확률변수의 분포가 동일함을 보임 #2. 정규분포를 따르는 확률변수의 적률생성함수를 유도함 #3. 표본평균의 적률생성함수를 유도함, 정규분포를 따르는 확률변수의 적률생서함.. 2018. 3. 24.
[손으로 푸는 통계] 11. 적률생성함수 (중심극한정리를 위한 재료 #2) 우리는 중심극한정리를 증명하기 위해 필요한 사전지식들을 공부하고 있습니다. 지난시간에는 테일러급수가 무엇인지 배웠구요. 이번시간에는 적률생성함수가 무엇인지 배워보겠습니다. 적률생성함수는 말 그대로 '적률'을 생성하는 함수입니다. 적률이 무엇인지 부터 알아야 합니다. 적률(Moment) 수학에서 적률은 아래와 같이 정의됩니다. n차적률이라고 부릅니다. $\mu_{n}=\int_{-\infty }^{\infty }\left ( x-c \right )^nf(x)dx$ 수학에서 정의된 적률이라는 개념을 통계학에 적용해 봅시다. 먼저 상수 c에 0을 넣습니다. $\mu_{n}=\int_{-\infty }^{\infty } x^{n} f(x)dx$ 이제 x를 확률변수, f(x)를 확률밀도함수로 해석하면 됩니다. $.. 2018. 3. 24.
[손으로 푸는 통계] 9. 중심극한정리 설명 중심극한정리란 무엇인가 이번 강의에서는 중심극한정리가 무엇인지 설명드리도록 하겠습니다. 수학적인 증명은 이후에 할거구요. 오늘은 개념만 설명드리는 것입니다. 모집단에서 크기가 n인 표본을 뽑았습니다. 이런 표본을 무수히 많이 뽑으면 표본평균들의 평균은 모평균과 같아지고, 표본평균들의 분산은 모분산/n과 같아집니다. 여기까지는 앞에서 증명한 내용입니다. $E(\bar{X})=\mu$ $V(\bar{X})=\frac{\sigma^2}{n}$ 우리는 표본을 무수히 많이 뽑았기 때문에 표본평균들을 가지고 확률분포 그래프를 그릴 수가 있습니다. 이때 표본의 크기 n을 키우면, 표본평균들의 분포가 정규분포에 가까워져 갑니다. 표본 평균의 분포 → 표본의 크기 n 증가 → 정규분포 이러한 사실이 '중심극한 정리' 입.. 2018. 3. 24.
반응형