[확률과통계 기초] 1-4. 합사건, 곱사건, 배반사건, 여사건
우리는 지난시간까지 시행, 표본공간, 사건 이라는 용어를 배웠습니다. 오늘도 용어를 배우는 시간인데요. 네자기 종류의 사건을 배워볼 것입니다. 합사건, 곱사건, 배반사건, 여사건입니다. 어떤 시행의 표본공간을 S라고 합시다. 이 말이 이해되시나요? 표본공간은 어떤 시행 결과로 나올 수 있는 전체집합입니다. 주사위를 던지는 시행을 했다면 표본공간은 아래와 같습니다. $S=\left \{ 1,2,3,4,5,6 \right \}$ 사건은 표본공간의 부분집합입니다. 주사위 던지기라는 시행의 사건을 몇가지 적어보면 아래와 같습니다. 홀수의 눈이 나오는 사건 = {1,3,5} 짝수의 눈이 나오는 사건 = {2,4,6} 3이상의 눈이 나오는 사건 = {3,4,5,6} 1. 합사건 (사건들의 합집합) 표본공간의 부분집..
2022. 5. 20.
[확률과통계 기초] 1-3. 시행,표본공간,사건 한눈에보기
우리가 지난 시간까지 시행, 표본공간,사건 이라는 용어를 배웠습니다. 시행,표본공간,사건은 자주 사용되는 용어라서 익숙하게 만들어야 합니다. 이미 배운내용이지만 한번 더 복습해봅시다. 각 용어의 정의는 아래와 같습니다. 시행 : 무한히 반복될 수 있고, 잘 정의된 결과 집합을 갖는 행위 표본공간 : 어떤 시행에서 발생할 수 있는 모든 결과를 모아놓은 집합 사건 : 어떤 시행의 결과들의 집합. 확률이 할당되어 있음. 표본공간의 부분집합. 시행,표본공간,사건을 쉽게 기억하는 방법은 주사위 던지기 예시로 기억하는 것입니다. 시행은 주사위던지기이고, 표본공간은 1부터6 까지의 집합이고, 사건은 짝수의 눈이 나오는 사건이나 홀수의 눈이 나오는 사건 등 표본공간의 부분집합입니다. 시행 표본공간 사건 주사위 던지기 ..
2022. 5. 20.