[F분포 한눈에] 정의, 분포함수,평균,분산,첨도,왜도,적률생성함수,특성함수
F분포의 통계량들을 표로 요약한 내용입니다. 정의 - 자유도가 $k_{1}$인 카이제곱분포를 따르는 확률변수를 $\chi_{k_1}$, 자유도가 $k_{2}$인 카이제곱분포를 따르는 확률변수를 $\chi_{k_2}$ 라고 합시다. 이때 F분포를 따르는 확률변수 F는 아래와 같이 정의됩니다. $F=\frac{ \frac{\chi_{k_1}}{k_1} }{ \frac{\chi_{k_2}}{k_2} } \sim F\left ( k_{1},k_{2} \right )$ 정의역 $0 \leq x < \infty$ 분포함수 $f(x;k_{1},k_{2})=\frac{\sqrt{\frac{\left ( k_1 x\right )^{k_1} k_2^{k_2}} { \left ( k_1 x+k_2 \right )^{k_1+..
2022. 7. 20.
자른평균이 뭐죠? 왜 사용하나요?? (trimmed mean)
모집단의 분포가 심하게 치우쳐 있는 경우에는 표본평균들의 값의 차이가 커집니다. 따라서 모집단을 추정할 때 표본에 따라 추정값이 매우 달라집니다. 이러한 문제를 보완하기 위해 등장한 평균이 '자른평균'입니다. 양쪽의 극단적인 10%를 또는 20%를 제거하고 평균을 구하는 것입니다. 영어로는 trimmed mean 이라고 합니다. 통계 소프트웨어 R을 이용하여 예시를 하나 만들어 봤습니다. {1,11,12,15,16,17,18,21,25,121} 이라는 표본이 뽑혔다고 해봅시다. 데이터는 총 10개입니다. R을 이용하여 평균을 구하면 아래와 같습니다. > my_data=c(1,11,12,15,16,17,18,21,25,121) > mean(my_data) [1] 25.7 양쪽 10%를 자르고 평균을 구하면..
2022. 7. 10.