반응형
어떤 확률변수 X의 확률밀도함수가 f(x) 일 때, 특성함수는 아래와 같이 정의됩니다.
양변에 절댓값을 씌워줍시다.
아래 부등식이 성립합니다. 복소해석학 내용입니다. 증명은 글 맨 아래 첨부한 링크를 참고하세요.
맨 오른쪽 항은 아래와 같이 변형됩니다.
의 크기는 1이므로 아래와 같이 변형됩니다.
맨 오른쪽 항은 확률분포를 전체 구간에 대해 적분한 것이므로 1입니다.
따라서 아래 등식이 성립합니다 .
특성함수는 항상 수렴합니다.
Rerefence
1. 복소수 부등식 증명 링크
https://proofwiki.org/wiki/Modulus_of_Complex_Integral
반응형
'@ 통계학 석박사 진학관련 > 수리통계학 요약' 카테고리의 다른 글
[수리통계학] #42. 이변량 분포 변환 (transformation) (1) | 2023.02.14 |
---|---|
[수리통계학] #41. 주변확률분포 (0) | 2023.02.13 |
[수리통계학] #40. 이변량 확률분포 (결합확률분포) (0) | 2023.02.13 |
[수리통계학] #38. 특성함수가 같으면 같은 분포일까? (유일성) (0) | 2022.07.06 |
[수리통계학] #37. 특성함수 (0) | 2022.07.06 |
[수리통계학] #36. 적률생성함수가 존재하지 않는 경우 (3) | 2022.07.06 |
[수리통계학] #35. 적률생성함수가 같은면 같은 분포일까 (유일성) (0) | 2022.07.06 |
[수리통계학] #34. 적률생성함수란 무엇인가 (0) | 2022.07.04 |
댓글
bigpicture님의
글이 좋았다면 응원을 보내주세요!
이 글이 도움이 됐다면, 응원 댓글을 써보세요. 블로거에게 지급되는 응원금은 새로운 창작의 큰 힘이 됩니다.
응원 댓글은 만 14세 이상 카카오계정 이용자라면 누구나 편하게 작성, 결제할 수 있습니다.
글 본문, 댓글 목록 등을 통해 응원한 팬과 응원 댓글, 응원금을 강조해 보여줍니다.
응원금은 앱에서는 인앱결제, 웹에서는 카카오페이 및 신용카드로 결제할 수 있습니다.