본문 바로가기
@ 필수과목/손으로 푸는 통계

[손으로 푸는 통계] 29. 2표본 z검정 (2) 원리

by bigpicture 2020. 1. 4.
반응형

우리는 아래와 같은 두 모집단의 평균을 비교하고 있습니다. 모집단의 평균을 알지 못하기 때문에 표본을 하나씩 뽑았습니다. 그림으로 나타내면 아래와 같습니다. 



이제 우리는 두 모집단의 평균을 통계적으로 비교할 방법을 찾아야 합니다. 우리에게 주어진 것들은 아래와 같습니다. 

1) 각 모집단의 분산 (σA2σB2)
2) 각 모집단의 표본평균의 분포

f(X¯A)=12πσAne(X¯AμA)22σA2n

f(X¯B)=12πσBne(X¯BμB)22σB2n

3) 각 모집단에서 뽑은 표본평균 (X¯A,1 , X¯B,1)

지난시간에 세운 귀무가설과 대립가설은 아래와 같습니다. 

귀무가설 : 두 모집단의 평균이 같다 ( μA=μB )
대립가설 : 두 모집단의 평균이 다르다 ( μAμB )

우리가 뽑은 표본의 '희박함 정도'를 이용하여 통계적인 판단을 내려야 하는데요. 통계분야의 선배들은 이런 아이디어를 찾아냈습니다. 

선배들은 각 모집단에서 뽑은 표본평균의 확률변수를 X¯AX¯B 라고 놓았습니다. 그리고 두 확률변수의 차를 Y라는 확률변수로 놓았습니다. 

Y=X¯AX¯B

만약 우리가 Y의 분포를 구할 수 있다면, 뽑은 표본평균의 차인 X¯A,1X¯B,1은 이 분포상의 한 점이 됩니다. 따라서 p값을 정의할 수 있게 되고 통계 검정이 가능해집니다. 

확률변수 Y의 분포를 구하는 방법은 아래와 같은 세가지 방법이 있습니다. 

1) 특성함수를 이용하는 방법 
2) 컨볼루션 적분을 사용하는 방법 
3) 기하적인 방법 다음 시간부터 한 방법씩 알아보도록 하겠습니다. 

Y의 분포는 다음시간부터 구하려고 합니다. 가장 쉬운 방법인 첫번째 방법을 이용해서 확률변수 Y의 분포를 구하겠습니다. 

 

 

#강의 영상

 

반응형

댓글

bigpicture님의
글이 좋았다면 응원을 보내주세요!