반응형
표본의 크기가 커지면 작은 차이에도 민감하게 반응하게 됩니다. 두 집단의 평균을 비교하는 t검정에서는 표본크기를 키우면 모집단의 아주 작은 평균차이에도 불구하고 유의차가 발생합니다.
위와 같은 현상은 정규성검정에서도 발생합니다. 완벽하게 정규분포를 따르는 모집단은 존재하지 않기 때문에 표본의 크기가 커지면 모집단이 정규분포를 따른다는 가정은 대부분 기각됩니다.
그렇다면 표본이 큰 경우에는 정규분포를 항상 따르지 않으니 정규성가정을 할 수 없는것일까요?
판단은 연구자의 몫입니다. 일반적인 경우 히스토그램을 그려보고, 히스토그램의 모양이 어느정도 정규분포를 따르면 정규성이 있다고 가정하고 진행하기도 합니다.
반응형
'@ 통계 교양 > 통계 Tips' 카테고리의 다른 글
자기회귀모델 (Autoregressive model) 쉽게 이해하기 (0) | 2023.11.06 |
---|---|
다중공선성 확인하는 방법 (분산팽창요인 VIF) (0) | 2023.10.30 |
표준화 회귀계수가 뭔가요? (0) | 2023.10.25 |
다중회귀분석에서 왜 수정된 결정계수를 사용하는가? (0) | 2023.10.24 |
머신러닝과 데이터마이닝의 차이 (0) | 2023.08.01 |
최빈값은 언제 쓸까? (mode) (0) | 2023.06.28 |
모집단이 정규분포를 따르면 표본평균은 항상 정규분포를 따를까? (0) | 2023.01.14 |
정규분포를 따르는 확률변수의 합의 분포 (0) | 2023.01.14 |
댓글
bigpicture님의
글이 좋았다면 응원을 보내주세요!
이 글이 도움이 됐다면, 응원 댓글을 써보세요. 블로거에게 지급되는 응원금은 새로운 창작의 큰 힘이 됩니다.
응원 댓글은 만 14세 이상 카카오계정 이용자라면 누구나 편하게 작성, 결제할 수 있습니다.
글 본문, 댓글 목록 등을 통해 응원한 팬과 응원 댓글, 응원금을 강조해 보여줍니다.
응원금은 앱에서는 인앱결제, 웹에서는 카카오페이 및 신용카드로 결제할 수 있습니다.